

IEEE Symposium on CI in Image, Signal Processing and Synthetic Media (IEEE CISM)

Trondheim, Norway

CAS-GAN for Contrast-free Angiography Synthesis

De-Xing Huang, Xiao-Hu Zhou*, Mei-Jiang Gui, Xiao-Liang Xie, Shi-Qi Liu, Shuang-Yi Wang, Hao Li, Tian-Yu Xiang, Zeng-Guang Hou* {huangdexing2022, xiaohu.zhou, zengguang.hou}@ia.ac.cn

State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences

I. Abstract

Iodinated contrast agents are widely utilized in numerous interventional procedures, yet posing substantial health risks to patients. This paper presents CAS-GAN, a novel GAN framework that serves as a "virtual contrast agent" to synthesize X-ray angiographies via disentanglement representation learning and vessel semantic guidance, thereby reducing the reliance on iodinated contrast agents during interventional procedures. Specifically, our approach disentangles X-ray angiographies into background and vessel components, leveraging medical prior knowledge. A specialized predictor then learns to map the interrelationships between these components. Additionally, a vessel semantic-guided generator and a corresponding loss function are introduced to enhance the visual fidelity of generated images. Experimental results on the XCAD dataset demonstrate the state-of-theart performance of our CAS-GAN, achieving a FID of 5.87 and a MMD of 0.016. These promising results highlight CAS-GAN's potential for clinical applications.

II. Motivation

- Iodinated contrast agents pose significant health risks for patients, including allergic reactions (*Lancet Discovery Science*, 2018) and acute kidney injury (*Nature Reviews Nephrology*, 2017).
- Generative models can synthesis photo realistic images based on specific constrain (*Nature Medicine*, 2024).

IV. Methods

(a) **Disentanglement representation learning**

 z_{χ}^{BG}

Disentanglement encoding

Background representations: $z_{\chi}^{BG} = E_{BG}(\chi), z_{\chi}^{BG} = E_{BG}(\chi)$

CAS-GAN is designed to learn an unpaired image translation function. To address the inherent challenges of this under-constrained translation, we adopt a cycle-consistency approach. Unlike conventional methods focused on style mappings, we propose a **disentanglement representation learning approach (Sec. IV (a))** and **vessel semanticguided generation process (Sec. IV (b))** to enhance fidelity of generated images.

V. Experiments							
Table I. Quantitative results with SOTAs.			Table II. Effects of several designs.				
Method	FID ↓	MMD (× 10) \downarrow	Index	DRL	VSGG	VSGL	FID $\downarrow \Delta$
CycleGAN [ICCV'17]	6.54	0.28	1				7.14 +1.27
UNIT [NeurIPS'17]	9.99	0.22	2			\checkmark	8.59 +2.72
MUNIT [ECCV'18]	8.87	0.33	3		\checkmark		6.57 +0.70
CUT [ECCV'20]	7.09	0.26	4		\checkmark	\checkmark	5.98 +0.11
AttentionGAN [TNNLS'21]	6.34	0.31	5	\checkmark			6.87 +1.00

- Vessel representations: $z_x^{\text{Vess}} = M(z_x^{\text{BG}}), z_v^{\text{Vess}} = E_{\text{Vess}}(x)$ • Explicitly formulating the relationship between z^{BG} and z^{Vess} Prediction loss: $\mathcal{L}_{\text{Pred}} = \mathbb{E}_{y \sim \mathcal{Y}} \left\{ \left| M(z_y^{\text{BG}}) - z_y^{\text{Vess}} \right|_1 \right\}$ (b) Vessel semantic-guided generation **Vessel semantic-guided generator (VSGG) G**^{Attn}_{Vess} Vessel semantic-guided loss (VSGL) Attention \mathcal{L}_{GAN}^{Sem} **U-Net** $z_{\chi}^{\rm Vess}$ **Vessel mask** X-ray **G**^{Ctx}_{Vess} angiography Context
 - Generator

$$A_{g} = \boldsymbol{G}_{Vess}^{Attn} [\boldsymbol{M}(z_{x}^{BG})], C_{g} = \boldsymbol{G}_{Vess}^{Ctx} [\boldsymbol{M}(z_{x}^{BG})]$$
$$y_{g} = x \odot (1 - A_{g}) + C_{g} \odot A_{g}$$

Loss function

$$s = \text{UNet}(y), s_g = \text{UNet}(y_g)$$
$$\mathcal{L}_{\text{GAN}}^{\text{Sem}} = \mathbb{E}_{s \sim S}[\log \boldsymbol{D}_{\text{Sem}}(s)] + \mathbb{E}_{s_g \sim S_g}\left[\log\left(1 - \boldsymbol{D}_{\text{sem}}(s_g)\right)\right]$$

VI. Conclusion & Future work

- We proposed a novel method for contrast-free X-ray angiography synthesis. This method offers a promising perspective for reducing the reliance on contrast agents during vascular interventional procedures.
- We introduced a disentanglement representation learning approach and a vessel semantic-guided generation process to ensure the visual fidelity of generated X-ray angiographies.
- In future works, the method will be validated on a large-scale dataset. Additionally, downstream applications will be conducted, verifying the feasibility of the method in vivo animal experiments.