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Iodinated contrast agents are widely utilized in numerous
interventional procedures, yet posing substantial health risks to patients.
This paper presents CAS-GAN, a novel GAN framework that serves as a
“virtual contrast agent” to synthesize X-ray angiographies via
disentanglement representation learning and vessel semantic guidance,
thereby reducing the reliance on iodinated contrast agents during
interventional procedures. Specifically, our approach disentangles X-ray
angiographies into background and vessel components, leveraging
medical prior knowledge. A specialized predictor then learns to map the
interrelationships between these components. Additionally, a vessel
semantic-guided generator and a corresponding loss function are
introduced to enhance the visual fidelity of generated images.
Experimental results on the XCAD dataset demonstrate the state-of-the-
art performance of our CAS-GAN, achieving a FID of 5.87 and a MMD of
0.016. These promising results highlight CAS-GAN's potential for clinical
applications.
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𝑧ℰ 𝒟

➢ Iodinated contrast agents pose significant health risks for patients, 
including allergic reactions (Lancet Discovery Science, 2018) and 
acute kidney injury (Nature Reviews Nephrology, 2017).

➢ Generative models can synthesis photo realistic images based on 
specific constrain (Nature Medicine, 2024).
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CAS-GAN is designed to learn an unpaired image translation function. 
To address the inherent challenges of this under-constrained translation, 
we adopt a cycle-consistency approach. Unlike conventional methods 
focused on style mappings, we propose a disentanglement 
representation learning approach (Sec. IV (a)) and vessel semantic-
guided generation process (Sec. IV (b)) to enhance fidelity of generated 
images. 
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(a) Disentanglement representation learning
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• Disentanglement encoding

      Background representations: 𝑧𝑥
BG = 𝑬BG(𝑥), 𝑧𝑦

BG = 𝑬BG(𝑦)

      Vessel representations:  𝑧𝑥
Vess = 𝑴(𝑧𝑥

BG), 𝑧𝑦
Vess = 𝑬Vess(𝑥)

• Explicitly formulating the relationship between 𝑧BG and 𝑧Vess

      Prediction loss: ℒPred = 𝔼𝑦∼𝒴 𝑀 𝑧𝑦
BG − 𝑧𝑦

Vess
1

• Generator

𝐴g = 𝑮Vess
Attn 𝑴 𝑧𝑥

BG , 𝐶g = 𝑮Vess
Ctx 𝑴 𝑧𝑥

BG

𝑦g = 𝑥 ⊙ 1 − 𝐴g + 𝐶g ⊙𝐴g

• Loss function

𝑠 = UNet(𝑦), 𝑠𝑔 = UNet(𝑦g)

ℒGAN
Sem = 𝔼𝑠∼𝒮 log𝑫Sem 𝑠 + 𝔼𝑠g∼𝒮g log 1 − 𝑫sem 𝑠g

VI. Conclusion & Future work

• We proposed a novel method for contrast-free X-ray angiography 
synthesis. This method offers a promising perspective for reducing 
the reliance on contrast agents during vascular interventional 
procedures.

• We introduced a disentanglement representation learning approach 
and a vessel semantic-guided generation process to ensure the visual 
fidelity of generated X-ray angiographies.

• In future works, the method will be validated on a large-scale dataset. 
Additionally, downstream applications will be conducted, verifying 
the feasibility of the method in vivo animal experiments.

Method FID ↓ MMD (× 10) ↓

CycleGAN [ICCV’17] 6.54 0.28

UNIT [NeurIPS’17] 9.99 0.22

MUNIT [ECCV’18] 8.87 0.33

CUT [ECCV’20] 7.09 0.26

AttentionGAN [TNNLS’21] 6.34 0.31

QS-Attn [CVPR’22] 7.20 0.24

StegoGAN [CVPR’24] 10.80 2.26

CAS-GAN [Ours] 𝟓. 𝟖𝟕 𝟎. 𝟏𝟔

Index DRL VSGG VSGL FID ↓ Δ

1 7.14 +1.27

2 8.59 +2.72

3 6.57 +0.70

4 5.98 +0.11

5 6.87 +1.00

6 6.70 +0.83

7 5.93 +0.06

8 5.87 −

Table I. Quantitative results with SOTAs. Table II. Effects of several designs.

arXiv

Non-contrast 
X-ray

GycleGAN UNIT MUNIT CUT AttentionGAN CAS-GAN 
(Ours)

C
ase 1

C
ase 2

Reference

C
ase 3


	幻灯片 1

