



#### **CAS-GAN for Contrast-free Angiography Synthesis**

**De-Xing Huang**, X. Zhou<sup>\*</sup>, M. Gui, X. Xie, S. Liu, S. Wang, H. Li, T. Xiang, Z.-G. Hou<sup>\*</sup>

Email: huangdexing2022@ia.ac.cn

State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation, Chinese Academy of Sciences University of Chinese Academy of Sciences

#### Background

• Vascular intervention is a minimally invasive treatment of cardiovascular diseases.



#### Background

• Currently, X-ray angiography is a must for guiding cardiologists to locate vascular lesions.





#### Vascular interventional procedures

(From: https://www.dicardiology.com/)

Non-contrast X-ray

X-ray angiography

• H. Zhao *et al.,* "Large-scale pretrained frame generative model enables real-time low-dose DSA imaging: An AI system development and multi-center validation study," *Med*, 6(1): 100497, 2025. **3/15** 

#### Motivation

#### • Contrast agents pose significant health risks for patients.



• A. P. Amin *et al.,* "Association of variation in contrast volume with acute kidney injury in patients undergoing percutaneous coronary intervention," *JAMA Cardiol.*, 2017, 2(9): 1007-1012. 4/15

#### Motivation

• Contrast agents pose significant health risks for patients.



• A. P. Amin *et al.,* "Association of variation in contrast volume with acute kidney injury in patients undergoing percutaneous coronary intervention," *JAMA Cardiol.*, 2017, 2(9): 1007-1012. 4/15

#### Solution

• Generative models can create photorealistic images based on specific constraints.



A photo of Bakklandet in Trondheim, 4k, photorealistic MRI: breast tumor with HER2 mutation from the view of T1c



• R. Rombach et al., "High-resolution image synthesis with latent diffusion models," in Proc. CVPR, 2022: 10684-10695.

• J. Wang et al., "Self-improving generative foundation model for synthetic medical image generation and clinical applications," Nat. Med., 31, 609-617, 2025. 5/15

## Challenge

• Current methods focus on style translation but fail to preserve vessel fidelity.



## Challenge

• Current methods focus on style translation but fail to preserve vessel fidelity.



Generated angiography Real angiography

#### **Contributions of this work**

✓ Novel **generative model** for more accurate contrast-free X-ray angiography synthesis.



## **Contributions of this work**

- ✓ Novel **generative model** for more accurate contrast-free X-ray angiography synthesis.
- Novel disentanglement representation learning approach for capturing relationships between anatomical and vessel features.
- ✓ Novel vessel semantic-guided generation process for X-ray angiography synthesis with enhanced attention mechanism and loss function.
  ✓ Style translation



#### **Part I: Disentanglement Representation Learning**

# Novel representation learning approach inspired by cardiologists

#### **Part I: Disentanglement Representation Learning**



Disentanglement encoding

For an X-ray angiography (y), using the background encoder ( $E_{BG}$ ) and vessel encoder ( $E_{Vess}$ ) to extract its background ( $z_y^{BG}$ ) and vessel ( $z_y^{Vess}$ ) features.  $z_y^{BG} = E_{BG}(y), z_y^{Vess} = E_{Vess}(x)$ 

• Explicitly formulating the relationship between background ( $z_y^{BG}$ ) and vessel ( $z_y^{Vess}$ ) features

$$\mathcal{L}_{\text{Pred}} = \mathbb{E}_{y \sim \mathcal{Y}} \left\{ \left| M(z_y^{\text{BG}}) - z_y^{\text{Vess}} \right|_1 \right\}$$

#### **Part I: Disentanglement Representation Learning**



• Infer vessel ( $z_{\chi}^{\text{Vess}}$ ) features from background ( $z_{\chi}^{\text{BG}}$ ) features

For a non-contrast X-ray (x), using the background encoder ( $E_{BG}$ ) to extract its background ( $z_x^{BG}$ ) features. Then, the predictor is utilized infer vessel features ( $z_x^{Vess}$ ) based on background ( $z_x^{BG}$ ) features.

$$z_{\chi}^{\mathrm{BG}} = \boldsymbol{E}_{\mathrm{BG}}(\chi), \boldsymbol{z}_{\chi}^{\mathrm{Vess}} = \boldsymbol{M}(\boldsymbol{z}_{\chi}^{\mathrm{BG}})$$

#### Part II: Vessel Semantic-Guided Generation

## Novel angiography generation process focuses on vascular details

#### Part II: Vessel Semantic-Guided Generation



• H. Tang *et al.,* "AttentionGAN: Unpaired image-to-image translation using attention-guided generative adversarial networks," *IEEE Trans. Neural Networks Learn. Syst.*, 34(4): 1972-1987, 2021.

• O. Ronneberger et al., "U-Net: Convolutional networks for biomedical image segmentation," in Proc. MICCAI, 2015: 234-241.

• The proposed CAS-GAN significantly outperforms baselines in both FID and MMD.



| Method                                                   | 1ethod FID↓ M |      |  |  |  |
|----------------------------------------------------------|---------------|------|--|--|--|
| CycleGAN [/CCV' 17]                                      | 6.54          | 0.28 |  |  |  |
| UNIT [NeurIPS' 17]                                       | 9.99          | 0.22 |  |  |  |
| MUNIT [ <i>ECCV</i> ' 18]                                | 8.87          | 0.33 |  |  |  |
| CUT [ <i>ECCV</i> ' 20]                                  | 7.09          | 0.26 |  |  |  |
| AttentionGAN [TNNLS' 21]                                 | 6.34          | 0.31 |  |  |  |
| QS-Attn [CVPR' 22]                                       | 7.20          | 0.24 |  |  |  |
| StegoGAN [CVPR' 24]                                      | 10.80         | 2.26 |  |  |  |
| CAS-GAN [Ours]                                           | 5.87          | 0.16 |  |  |  |
| • Post results are highlighted in <b>hold</b> and second |               |      |  |  |  |

#### Table I. Quantitative comparisons with SOTAs.

• Best results are highlighted in **bold** and second best are <u>underlined</u>.

- M. Heusel *et al.,* "GANs trained by a two time-scale update rule converge to a local Nash equilibrium," in *Proc. NeurIPS*, 2017.
- A. Gretton *et al., "*A kernel two-sample test," *J. Mach. Learn. Res.*, 13(1): 723-773, 2012.

• Case 1: CAS-GAN can effectively preserve structural consistency of vessels.



• Case 1: CAS-GAN can effectively preserve structural consistency of vessels.



• Case 2: CAS-GAN can accurately synthesis critical vessel bifurcations.



• Case 2: CAS-GAN can accurately synthesis critical vessel bifurcations.



#### Main Results – Ablation Studies

#### Table II. Effects of several designs.

| Index | DRL          | VSGG         | VSGL         | $FID\downarrow$ | Δ     |
|-------|--------------|--------------|--------------|-----------------|-------|
| 1     |              |              |              | 7.14            | +1.27 |
| 2     |              |              | $\checkmark$ | 8.59            | +2.72 |
| 3     |              | $\checkmark$ |              | 6.57            | +0.70 |
| 4     |              | $\checkmark$ | $\checkmark$ | 5.98            | +0.11 |
| 5     | $\checkmark$ |              |              | 6.87            | +1.00 |
| 6     | $\checkmark$ |              | $\checkmark$ | 6.70            | +0.83 |
| 7     | $\checkmark$ | $\checkmark$ |              | 5.93            | +0.06 |
| 8     | $\checkmark$ | $\checkmark$ | $\checkmark$ | 5.87            | -     |

- DRL: Disentanglement representation learning
- VSGG: Vessel semantic-guided generator
- VSGL: Vessel semantic-guided loss



Each module within the CAS-GAN plays an integral role in precisely generating vascular structures

### Summary

✓ This is the **first attempt** to utilize a generative model for **contrast-free angiography** 

synthesis, offering a promising way to reduce reliance on contrast agents.

- ✓ The disentanglement representation learning approach and vessel semantic-guided generation process can ensure high fidelity of generated images.
- ✓ In future works, CAS-GAN will be validated on a large-scale dataset, and downstream applications will be conducted in vivo animal experiments.





## Thanks! & QA

Email: huangdexing2022@ia.ac.cn



*arXiv* Poster