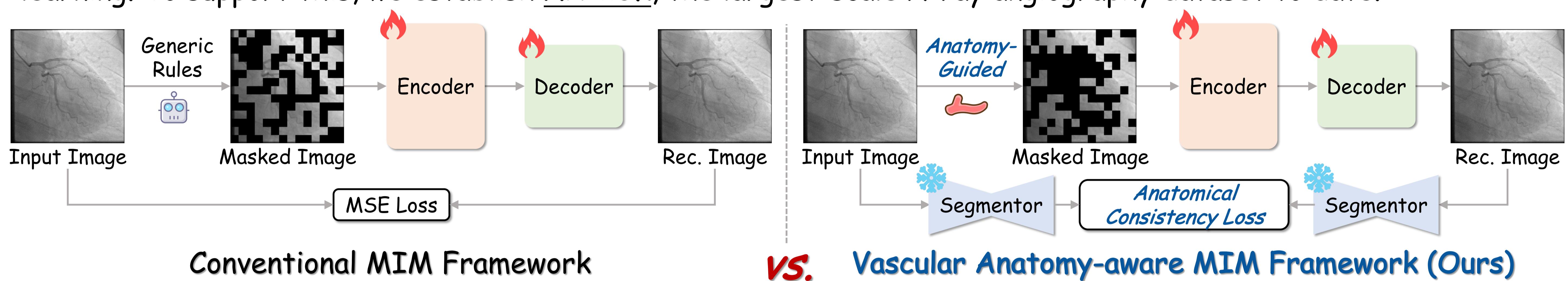


VasoMIM: Vascular Anatomy-aware Masked Image Modeling for Vessel Segmentation

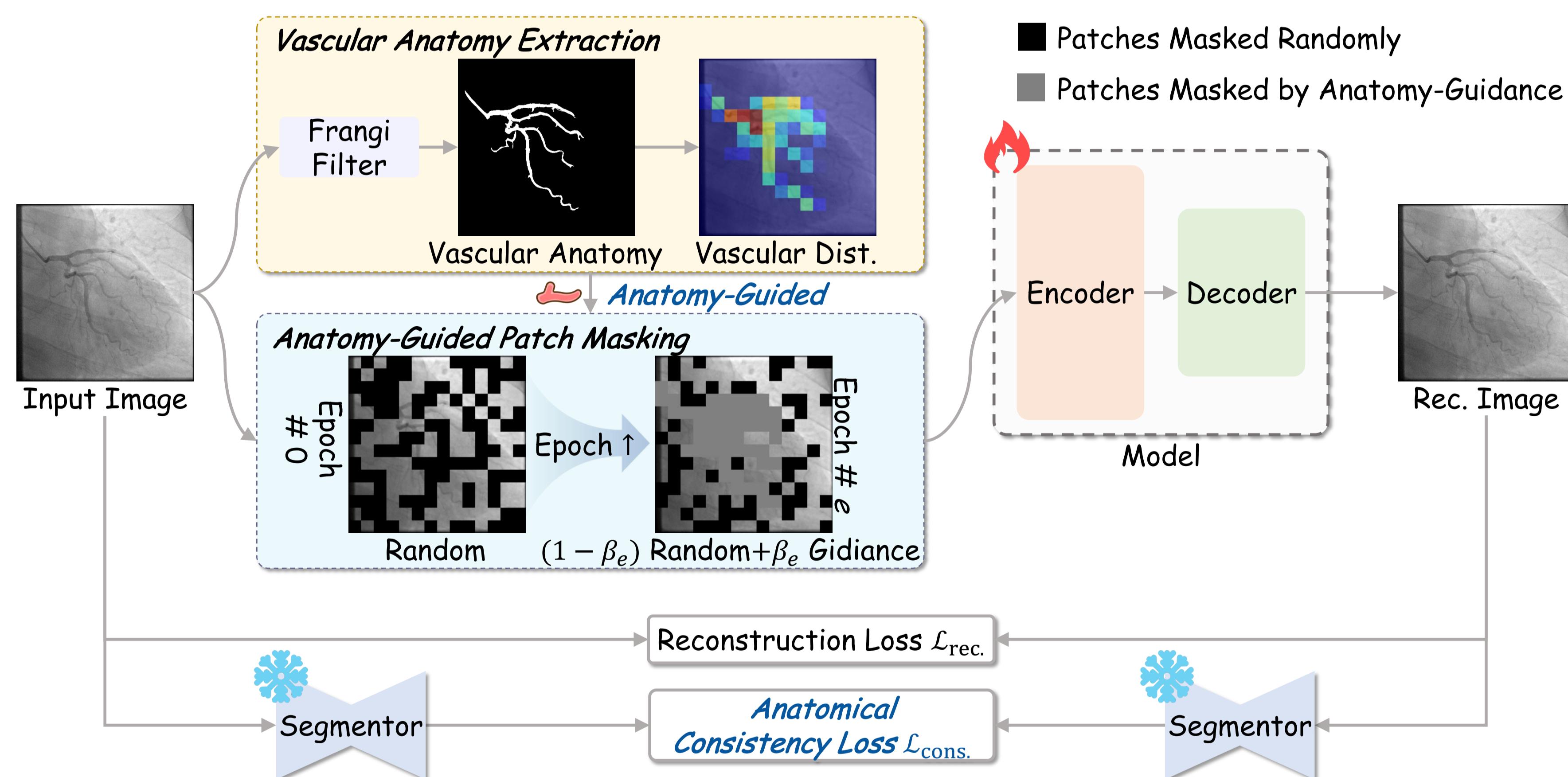
Dexing Huang, Xiao-Hu Zhou*, Mei-Jiang Gui, Xiao-Liang Xie, Shi-Qi Liu,
 Shuangyi Wang, Rui-Ze Ma, Nu-Fang Xiao, Zeng-Guang Hou*
 Institute of Automation, Chinese Academy of Sciences
 {huangdexing2022, xiaohu.zhou, zengguang.hou}@ia.ac.cn

I. Motivation & Contributions

- **Background:** Vessel segmentation is critical for clinical applications. However, the prohibitive cost of obtaining annotations hinders fully-supervised approaches. Self-supervised pre-training (SSP) overcomes this bottleneck by exploiting large-scale unlabeled data, learning robust representations that enhance segmentation performance.
- **Challenge:** The potential of SSP for X-ray angiogram analysis has not been explored. The challenges stem from two aspects: domain-specific pre-training techniques and large-scale data. Existing masked image modeling (MIM) lacks explicit anatomical awareness, specifically within the masking strategies and reconstruction objectives.
- **Solution:** We propose VasoMIM, a vascular anatomy-aware framework designed to enhance vascular representation learning. To support this, we establish XA-20K, the largest-scale X-ray angiography dataset to date.



II. Methods



- **Vascular Anatomy Extraction** \Rightarrow Frangi Filter (MICCAI, 1998)
- **Anatomy-Guided Masking Strategy** \Rightarrow Focuses on **vascular regions**.
- **Anatomical Consistency Loss** \Rightarrow Learns more **discriminative vascular representations**.

$$\text{Vascular Distribution} \quad f(m_i) = \frac{\sum_{j=1}^{P^2} \mathbb{I}(m_{ij} = 1)}{\sum_{i,j=1}^{N,P^2} \mathbb{I}(m_{ij} = 1)}$$

$$\text{Weak2Strong Guidance} \quad \beta_e = \beta_0 + \frac{e}{E} (\beta_E - \beta_0)$$

$$\mathcal{L}_{\text{cons.}} = \mathcal{L}(\mathcal{S}(I), \mathcal{S}(I'))$$

III. Main Results

➤ Comparison with SOTAs on Three Benchmarks

Method	ARCADE		CAXF		XCAV	
	DSC (%)	clDice (%)	DSC (%)	clDice (%)	DSC (%)	clDice (%)
Traditional						
Frangi Filter (Frangi et al. 1998)	41.30	40.91	64.01	65.73	58.46	57.15
From Scratch						
U-Net (Ronneberger et al. 2015)	58.27 \pm 1.33	59.70 \pm 1.40	78.72 \pm 0.74	82.68 \pm 0.87	68.63 \pm 2.80	63.47 \pm 3.33
Contrastive Learning						
MoCo v3 (Chen, Xie, and He 2021)	60.99 \pm 0.30	62.68 \pm 0.18	77.76 \pm 0.51	80.91 \pm 0.31	70.85 \pm 0.34	63.97 \pm 0.71
DINO (Caron et al. 2021)	65.86 \pm 0.49	67.84 \pm 0.52	80.13 \pm 0.53	82.90 \pm 0.51	72.28 \pm 0.96	66.36 \pm 1.17
Masked Image Modeling						
MAE (He et al. 2022)	68.17 \pm 0.29	69.89 \pm 0.22	83.53 \pm 0.14	87.37 \pm 0.21	76.43 \pm 0.17	72.58 \pm 0.49
SimMIM (Xie et al. 2022)	66.92 \pm 0.43	68.93 \pm 0.71	82.24 \pm 0.34	85.77 \pm 0.17	75.10 \pm 0.36	69.98 \pm 0.42
AMT (Liu, Gui, and Luo 2023)	68.15 \pm 0.23	69.77 \pm 0.38	83.47 \pm 0.08	87.40 \pm 0.04	76.51 \pm 0.20	72.60 \pm 0.44
DeblurringMIM [†] (Kang et al. 2024)	68.60 \pm 0.44	70.21 \pm 0.37	83.85 \pm 0.09	87.78 \pm 0.20	77.02 \pm 0.08	73.58 \pm 0.19
CrossMAE (Fu et al. 2025)	62.40 \pm 0.33	64.23 \pm 0.27	80.07 \pm 0.13	83.45 \pm 0.19	72.25 \pm 0.24	65.94 \pm 0.15
HPM (Wang et al. 2025)	66.82 \pm 0.28	68.49 \pm 0.41	82.61 \pm 0.21	86.18 \pm 0.10	75.48 \pm 0.19	70.79 \pm 0.26
CheXWorld [†] (Yue et al. 2025)	67.95 \pm 0.26	70.31 \pm 0.48	80.64 \pm 0.31	82.65 \pm 0.31	73.74 \pm 0.24	67.13 \pm 0.32
VasoMIM	68.85\pm0.47	70.56\pm0.36	84.49\pm0.17	88.33\pm0.09	77.52\pm0.26	74.18\pm0.34

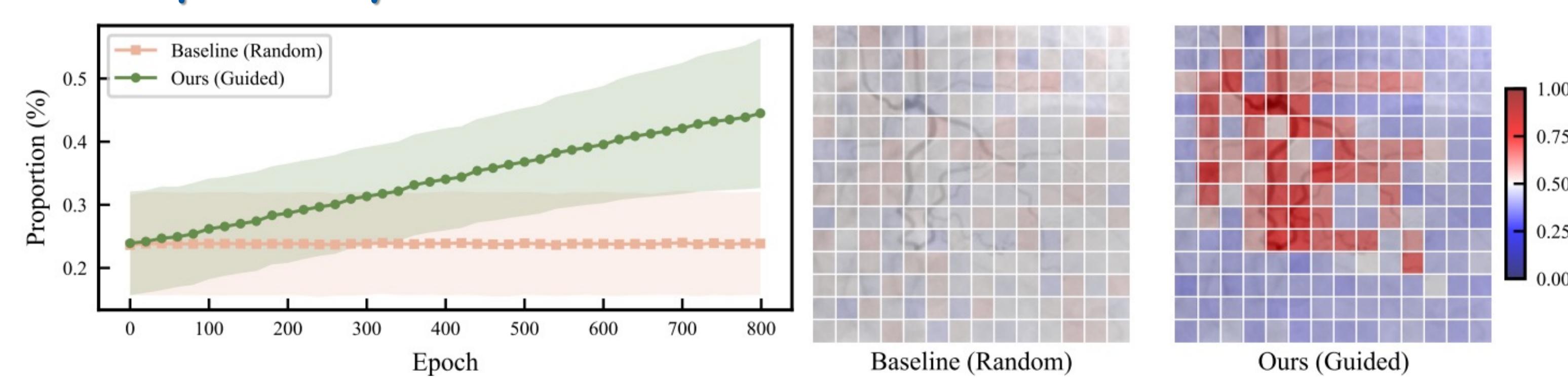
➤ Ablations

Guidance	$\mathcal{L}_{\text{cons.}}$	ARCADE	CAXF	Case	β_0	β_E	ARCADE	CAXF
—	—	68.00	83.15	Random	0	0	68.45	84.03
—	✓	68.45	84.03	Weak-to-Strong	0	0.5	68.85	84.49
✓	—	68.30	83.96	Weak-to-Strong	0	1	68.52	84.24
✓	✓	68.85	84.49	Strong-to-Weak	1	1	65.36	81.17

Different Components

Different Guidance

➤ In-depth Analysis



Our strategy clearly favors masking patches rich in vascular anatomy.

Setting	SS ($\times 10^{-2}$) \uparrow	CHI \uparrow	DBI \downarrow
w/o $\mathcal{L}_{\text{cons.}}$	-4.19	17.11	25.32
w/ $\mathcal{L}_{\text{cons.}}$	0.54	607.24	4.03

SS: Silhouette Score; CHI: Calinski-Harabasz Index; DBI: Davies-Bouldin Index.

Superior clustering metrics.
 Highly discriminative representations.

IV. Conclusion & Future

- We propose a domain-specific pre-training framework (VasoMIM) and a dataset (XA-20k) to facilitate vessel segmentation.
- Future efforts will focus on curating larger-scale datasets and assessing VasoMIM's generalizability on diverse downstream applications, e.g., stenosis detection.